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ABSTRACT 

An efficient algorithm has been devised to compute the crossovers in satellite altimetry. The significance of 

the crossovers is twofold. First, they are needed to perform the crossover adjustment to remove the orbit 

errorSecondly, they yield important insight to the oceanic variability. Nevertheless there is no published algorithm 

to make this very time consuming task easier, which is the goal of this note. The success of the algorithm is predi- 

cated on the ability to predict (by analytical means) the crossover coordinates to within 6 km and 1 second of the 

true values. Hence, only one interpolation/ex@apolation step on the data is needed to derive the crossover coordi- 

nates in contrast to the many interpolation/extrapolation operations that are usually needed to arrive at the same 

accuracy level if deprived of this information. 

1. INTRODUCTION 

In satellite altimetry (in which the sea level relative to a reference ellipsoid that best approximates the shape 

of the earth is measured along the satellite ground track, e.g., Wunsch and Gaposchkin, 1980). the tern "crossover" 

refers to the intersection of two ground tracks. The coordinates of a crossover point are comprised of the location 

(Le., latitude and longitude) and the two times when the satellite passes over the crossover point. The crossover 

difference is the difference between the two sea level measurements. The crossovers are important in two aspects. 

First, the crossover difference reveals the temporal variability of the sea level and also avoids the geoid uncer- 

tainty (the geoid is an equipotential surface of the earth gravity field, to which a motionless Ocean would conform). 

The sea level varies with respect to the reference ellipsoid primarily because of the earth gravity field and secon- 

darily due to the dynamical effects of the Ocean. Presently the uncertainty of the geoid is at least comparable if not 

larger then the effects of ocean dynamics (e.g., Tai, 1983). Analyses based on crossover differences have shown 

and are continuing to reveal valuable insight on the sea level temporal variability (e.g., Cheney and Marsh, 1981; Fu 

and Chelton, 1985; Cheney et al., 1986.) 

Secondly, the crossovers play a pivotal role in removing the satellite orbit error (i.e., the uncertainty of the 

satellite's altitude) by the so-called crossover adjustment method (e.g., Tai and Fu, 1986; Tai, 1987). The orbit 

error, which usually causes the crossover difference to be over 1 m in size, cannot be taked lightly lest the crossover 

difference should reveal not the sea level temporal variability but the variability produced by the orbit error. Furth- 
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ermore, the basin-scale geoid uncertainty is small enough for the basin-scale circulation to be investigated (e.g., Tai 

and Wunsch 1983,1984) and the orbit error reduction is of paramont importance in this case. 

For the exact repeat orbit, one can use along-track differences instead of crossover differences to reduce the 

orbit error if one is only interested in the temporal variability. However, the crossover adjustment has to be per- 

formed if one is interested in the absolute topography because ascending and descending tracks may have different 

orbit error characteristics which are only evident in crossover differences. 

There are many error sources in satellite altimetry (e.g., Tapley et al., 1982). Thus, it is imperative that any 

estimate be deduced from many samples so as to minimize the effect of a particular error source or a particularly 

bad error realization because the errors are more or less independent of each other; and it is not unusual to find 

thousands or even millions of crossovers being treated in a single problem (e.g., Marsh et al., 1982; Rapp, 1983). 

However, the simple prelude of finding the crossoven can consume more computing resources than solving the 

problem itself if an inefficient algorithm is used Realizing the importance of a good algorithm, yet one would 

search in vain in the literature for a published algorithm to compute the crossovers. Since the launch of Geosat 

(March, 1985). the matter has taken on added urgency. The initial 18 months of the Geosat Mission is classified, but 

the crossover differences in this period are unclassified and would be available to the public if it were not such a 

cumbersome job. 

The purpose of this note is to make one good and tested algorithm available to the public. Hopefully a better 

algorithm will be published as the result of this note. In the following, it will be demonstrated that one can derive 

the coordinates of a crossover point to within 1 second and 6 km of the true values (1 km if an ad hoc formula is 

used) from the circular orbit approximation while compensating for the earth's oblateness. Thus only one 

interpolation/extrapolation step is needed to derive the coordinates of the crossover from the data as oppose to three 

or four interpolation/extrapolation steps that are usually needed if deprived of this information. 

2. CIRCULAR ORBIT APPROXIMATION 

The orbit of the satellite is better described by an ellipse. However for the purpose of satellite altimetry, the 
I 

orbit is made so circular that the circular approximation would greatly simplify the problem while incur little error. 

For example, the first eccentricity (see definitions in Section 3) of the Seasat's orbit is merely 0.001, while its coun- 
2 
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terpart for the earth is 0.0818 (Le., one incurs much bigger error by assuming the earth is spherical. The effect of 

the earth's oblateness will be discussed in Section 3). 

If one assumes the orbit is circular and the earth is spherical, the location of the ground track can be easily 

derived as a function of time. This has been done in Tai and Fu (1986, see their eq. (3). Appendix 1, and Figure 1). 

We can adapt their formulation to the present case; and the relevant equations are 

- 
41 = j sin-'(sin At sini) , 

M = tan-'(tan Atcosi) - Wt , 
(1) 

(2) 
where the time, t, is nondimensionalized to make 2x correspond to the duration of one revolution; 6 is the latitude 

(the overhead bar conveys the fact that it is the geocentric latitude, see Figure 1); X is the longitude and defined to be 

in the range of [O, 2x); i is the inclination angle; f2 is the earth rotation rate relative to the orbital plane. Quantities 

with a subscript o are related to the equator crossing, and At = t-to , M = X - I,, (Le., to and I,, are the equator cross- 

ing time and longitude respectively). The adaptation is done so that equations (1) and (2) are valid for either an 

ascending or a descending track with j=1 if ascending and j=-1 if descending. Thus, the valid range of each vari- 

able is: -i S 6 S i, bd 5 d2, and S (l+kR) @, where k=l if i > @ (Le., retrograde), and k= -1 if i < 1J2 (i.e., 

prograde). 

2a. Determine the equator crossing time and longitude 

As a first step, the algorithm requires that the data be sorted into ascending and descending tracks, and the 

equator crossing time and longitude be determined for each hack. Because data gaps (e.g., over land) often prevent 

the direct determination of these coordinates from data, there is a need to determine them analytically. From a point 

(with cordinates t, 6. A) along the track, one can determine from (1) that for the equator crossing time, 

rlst = j sin-' (sin &ini , 
to =t-At , 

and for the equator crossing longitude, from (2) and (3), 

A,, = A-tan"(tan AZ cosi ) + ~t . 

(3) 

(4) 

Note that if h, should lie outside [0, 211:). one can add or substract 211: from A, to make it fall in this range. 

2b. Determine the coordinates of a crossover point 

(1). Longitude 

I 
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Let a subscript a ( or d) convey the meaning of ascending (or descending). Then from the geometrical sym- 

metry entailed in equations (1) and (2). it is easy to see that the longitude of the crossover point must lie right in the 

middle between the two equator crossing longitudes of the two tracks. To be more specific, 

fiF if boa - x&jl2(l+Q)x , 
Loa + hod 

2 
h= 

where the sign in (6b) is such that (KX c 2x. And if (142)~ c bo(l-h4dl c (l+Q)x, we have two possibilities: 

(i) two crossover points if i > I&?, i.e., 

(ii) no crossover point if i < a. 
(2) Time 

Knowing h (therefore M), one can solve for At using eq. (2). which can be transformed to a more convenient 

form that avoids the evaluation of tan-', Le., 

f (At)=tan(M+QAt)-runbtcosi = O  . (7) 
Hence, it becomes a problem of finding the zero of the transcendental function f. One can use either the ascending 

or the descending equator crossing longitude to form M. Care must be taken (Le., add or substract 2x)  to make sure 

that 

k=l if i > I&? and k=-1 if ita. 

S (l+kn)a. Also note that if Ah c 0 (or Ah > 0). At lies between 0 and kx/2 (or -ksc/2). Remember that 

(3) Latitude 

The geocentric latitude can be derived immediately from eq. (1). 
I 

3. EFFECTS OF THE EARTH'S OBLATENESS 

As mentioned in the previous section, the earth is far more elliptical than the orbit. The effects are twofold 

(see Fig. 1). First, the subsatellite point (marked as g in Fig. 1, where the line joining it with the satellite is perpen- 

dicular to the local earth surface) is different from the point (marked s in Fig. 1) where +e line joining the satellite 

with the earth center intersects the earth surface. Secondly, the coordinate data are given in terms of the geographic 
I 

latitude (defined as the angle between the local vertical and the equatorial plane, Le., the latitude that can be deter- 
2 
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mined from local astronomical observations), which is to be distinguished from the geocentric latitude because of 

the earth’s oblateness (see Fig. 1, varibles with an overhead bar m geocentric, while those without it are geo- 

graphic). The subscript g (or s) distinguishes quantities related to point g (or s). 

The relation between $ and 5 can be derived from (see Appendix) the following equation. 

where a and b are respectiely the major and minor axis of the earth; e is the first eccentricity [defined as 

e=(1-b2/u2)”21; e’ is the second eccentricity [defined as e‘=(a2/b2-l)’n]. These values are given in Table 1. 

The derivations in Section 2 all refer to &, but the data refer to $t .  Their relationship can be derived by solv- 

ing the following transc.endental equation (see Appendix), 

c sin, - b sinp 
=gtanp ’ 

c COS, - b  COS^ (9) 

where c is the distance of the satellite to the center of the earth and p is related to $g [see eq. (10) below]. Given p, 

qJ can be solved, or vice versa; and the relation between p and $t is given by 
- 

(10) 
a tan$g = -tanP . 
b 

Two inequalities are very helpful in specifying the range that the solution of equation (9) must fall in. First, to 

determine the equator crossing time and longitude, $g is given, but is needed in equations (3) and (4). Thus, to 

determine q8 from $t ,  (p, is in the range (see Fig. 1). 

Secondly, to determine the latitude of a crossover point, equation (1) yields the value of 

answer. Hence, to determine $t from $, , $t is in the range (see Fig. 1). 

while is the final 

- 
@J $8 < $8 ’ (12) 

It has been discovered that there is no need to solve equations (9) and (10). The following two approxima- 

tions, representing the midpoints of the ranges specified by equations (11) and (12), actual1 yield better results than 

equations (9) and (10). 



The better accuracy (1 km versus 6 km, see Section 5)  does not portent p..ysical consistency. Actually, the 6 

km accuracy in location is consistent with 1 second accuracy in time (Le., the ad-hoc approximation is simply a 

lucky guess). The orbit eccentricity (whh can cause deviations from the circular orbit by typically a few parts per 

thousand) is perhaps the cause here. 
whtek, 

To be physically more consistent, one could take the orbit eccentricity and the movement of the perigee (i.e., 

the point on the orbit ellipse which is closest to the center of the earth) into account But this would defeat the pur- 

pose of an efficient algorithm because one only needs to get close enough so that one interpolatiodextrapolation 

step would give us the precise values. 

In summary, the oblateness only affects the latitude. Hence, it has no effect on the determination of the times 

and longitude of a crossover point (Section 2b) except that it may affect the equator crossing time and longitude if 

these coordinates have to be derived from the latitude (Section 2a) in lieu of the data. However, the oblateness 

effects can be accounted for by equations (9) and (10). or equations (13) and (14). As such, an accuracy to within 1 

km can be achieved. 

4. ALGORITHM 

A. Sort data into ascending and descending tracks. 

B. Determine the equator crossing time and longitude for each track. 

It is recommended that each category of data be assembled into an array, e.g., all the latitudes of a track can 

form a latitude array. Then there is the so-called table look-up (look-down) subroutine, which searches a strictly 

increasing (decreasing) array for the location index that a specified level is penetrated for the first time. Thus, speci- 

fying zero for the latitude array, one can quickly find the closest points to the equator to facilitate the 

interpolatiodextrapolation to the equator. However, if the nearest points are too far away, one could apply equa- 

tions (3). (4). (5). and (13) to the nearest point to find the time and longitude of equator crossing. 

C. From two tracks, compute A (longitude of the crossover point) from q. (6). I 
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Note that h is the perfect candidate for the specified level in the table look-up (look-down) subroutine in step 

E except that the longitude array is not strictly increasing (descreasing) because of the jump at zero longitude. 

D. Compute At from eq. (7). Then compute t, and t d .  

E. Use ?,and ?d as the specified levels in the table look-up to find the nearest points in the data to the crossover 

point. 

F. Interpolation/extrapolation step. 

However, if the nearest points are not close enough, this step should be abandoned because the crossover 

difference would be contaminated by the geoid. 

5. RESULTS AND DISCUSSIONS 

The algorithm outlined in the previous section has been tested using the Geosat exact repeat data. The first 

descending track of the second repeat period (17 days) is selected as the basis. Then crossovers between this and 

the subsequent 244 ascending tracks (i.e., to the end of the 17-day period) are computed using the algorithm. The 

results of the first day (actually the first file. There are 17 files for each repeat period) are tabulated in Table 2. Note 

that 260 crossovers are generated in 17 days because 16 ascending tracks form two crossovers each with the 

selected descending track (see Appendix 2 of Tai and Fu, 1986, for explanation). It would be rather cumbersome to 

list them all. In Table 3, statistics of the differences between predicted (i.e.. analytic approximaton) and true (i.e.. 

deduued from data) values are presented. Note that the data only yield 147 crossovers (out of a theoretically possi- 

ble 260) because of data gaps. 

The descending track descends from (72.054ON, 284.959OE) to (72.054OS, 92.91OOE) and crosses the equator 

at 189.134OE on 59877839.064 seconds counting from the beginning of the Geosat Mission (hereafter 59 million 

seconds are substracted to make the presentation easier). In Table 2 and 3, all unprimed variables are derived from 

the data. Primed variables are derived from the equations. I$' is determined from equation (14) (Le., a simple aver- 

age), while $" is derived from equations (9) and (10). As discussed in Section 3, I$' apprbximates I$ better than I$". 

From Table 2, I$' is accurate to within 0.01' and I$" is accurate to within 0.06". The longitude is highly accurate 

except near high latitudes where the tracks are going more east-west than north-south. But even there, d& 

I 

L '  
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maximum error is only about 0.01'. The time discrepancies are generally less than 1 second except for two cases 

where they are around 1.5 seconds. Note that the orbit eccentricity is partially accounted for here by adapting an 

orbit period of 6031.4 seconds north of the equator, while using 6043.6 seconds south of the equator. Because the 

purpose is to compute the coordinates of the crossover point, all available data have been used (Le., the land values 

are included). These general remarks are substantiated by Table 3. 

To compute all 260 crossovers, it takes about 0.5 second cpu time of the San Diego Supercomputer Center's 

Cray XMP-48. It translates to about two-minute cpu time to compute all the crossovers in the 17-day period. 

Because the predicted values are so close to the real values, only one interpolationlextrapolation step is needed 

versus the situation that many steps are needed if starting from scratch. Without any optimization, the prediction 

step takes less than one third the time that is needed for the search and interpolationlextrapolation step. 

The transcendental equation in the prediction step is solved by a method, which combines the bisection and 

the secant rule. One could easily optimize the prediction step by solving and storing the solutions to be used later as 

the starting points for the interations. For instance, eq. (7) can be solved for At with AX ranging from 1' to 192' 

with 1' increment. Then when one gets a AX of 99.5'. he can use the solutions for 99' and 100' to start the intera- 

tion. Furthermore, because the location can be predicted so accurately, when the crossover point is obviously over 

land, the extremely time consuming search step (Le., table look-up, look-down) can be avoided altogether, for 

example, by setting up 1' by 1' land flags. * '  

APPENDIX 

To get the relation between 4 and $, an ellipse can be expressed as 

- + J L l ,  x 2  
a2 b2 

or as 

Thus from (15), (16). 

x = a  cosp , 
y = bsinp . 

and 



dx 

4 - = b  cosp , 

-- 
dP --a sinp ’ 

Le., the tangential unit vector at the point (x,y) and in the direction of increasing p is proportional to (-a sinp, b 

cosp). Thus the normal unit vector is proportional to (b cosp, a sinp). Hence, 

tan$= “tanp (20) b 
From (17) and (20). eq. (8) is the result. To derive eq. (9). let us consider Fig. 1. The coordinate of the satellite is (c 

cos $, , c sin $,). The coordinate of point g can be expressed as (a cosp, b sinp) [see equations (15). (16)l. thus, one 

can form the vector ftom point g to the satellite and eq. (9) would result if one considers the ratio of the y com- 

ponent to the x component of this vector. 
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FIGURE LEGEND 

Fig. 1. An exaggerated view of the earth and the satellite. 
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Table 1. The relevant Geodetic Reference System 1980 values adopted in this paper and certain orbit parame- 

ters 

a = 6378137 m 

b = 6356752 m 

e2 = 0.0066943800229 

e = 0.00673949677548 e' = second essentricity 

c = 7163 km 

semimajor axis 

semiminor axis 

e = first eccentricity 

distance between the satellite and the center of the earth 
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Table 2. Computed and predicted crossover coordinates where the time is in seconds, latitude and longitude in 

degrees. 

L O  

356.581 

331.499 

306.417 

281.335 

256.254 

231.172 

206.090 

181.007 

155.925 

130.843 

105.761 

80.679 

55.597 

30.515 

5.434 

5.434 

td 

N.A. 

876465.92 

N.A. 

N.A. 

876815.08 

877067.34 

877477.72 

87801 7.13 

878487.38 

878789.53 

878974.18 

N.A. 

879187.41 

879261.35 

879327.39 

N.A. 

t 'd 

876395.66 

876465.69 

876548.71 

876657.10 

876814.40 

877066.59 

877477.28 

878017.66 

878488.84 

878790.95 

878975.28 

879097.57 

879187.90 

879261.63 

879327.47 

876372.60 

IO 

N.A. 

88827 1.47 

N.A. 

N.A. 

906034.89 

9 1 1820.25 

917447.45 

922945.60 

928512.87 

934248.23 

940 10 1.13 

N.A. 

851963.24 

957926.87 

963898.32 

N.A. 

6 

882304.23 

88827 1.69 

894225.99 

900155.21 

906035.60 

911821.03 

917447.9 1 

922945.05 

928511.37 

934246.78 

940 100.0 1 

946015.34 

951962.64 

957926.58 

%3898.17 

966853.04 

h 

N.A. 

260.3 19 

N.A. 

N.A. 

222.697 

210.155 

197.612 

185.07 1 

172.529 

159.988 

147.444 

N.A. 

122.354 

109.813 

97.274 

N.A. 

X' 

272.858 

260.317 

247.776 

235.235 

222.694 

210.153 

197.612 

185.071 

172.530 

159.989 

147.448 

134.907 

122.366 

109.825 

97.284 

277.284 

4) 

N.A. 

70.406 

N.A. 

N.A. 

56.512 

43.370 

20.560 

-10.149 

-36.588 

-52.739 

-61.698 

N.A. 

-69.712 

-71.328 

-72.006 

N.A. 

$' 

71.664 

70.406 

68.000 

63.813 

56.506 

43.360 

20.55 1 

-10.146 

-36.584 

-52.740 

-6 1.700 

-66.778 

-69.713 

-71.330 

-72.008 

7 1.894 

4'' 

71.709 

70.453 

68.052 

63.872 

56.575 

43.435 

20.601 

-10.172 

-36.656 

-52.812 

-6 1.762 

-66.832 

-69.762 

-71.375 

-72.052 

71.938 
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Table 3. Statistics of the differences between predicted (primed) and real (unprimed) values. Time is in 

seconds. Latitudes and Longitudes ww in degrees. 

statistics t i - tm f'd-td h'-h $'-$ $" -$  

Maximum 0.79 1.53 0.011 0.0058 0.0667 

Minimum -1.56 -0.78 0.078 -0.0101 -0.0746 

MeaIl -0.34 0.34 -0.oo04 -0.0023 -0.0162 

Standard 0.82 0.79 0.0098 0.0041 0.0532 
Deviation 

RMS Value 0.88 0.86 0.0098 0.0047 0.0555 

,/' 
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